How AI is transforming biotechnology

01 December 2022


Hoe AI is transforming biotechnology

Machine Learning and Artificial Intelligence have taken the world by storm, changing the way people live and work. Advances in these fields have elicited both praise and criticism. AI and ML, as they’re colloquially known, offer several applications and advantages across a wide range of sectors. Most importantly, they are transforming biological research, resulting in new discoveries in healthcare and biotechnology.

Identifying Gene Coding Regions

Next-generation sequencing has greatly improved genomics studies by sequencing a gene in a short time. As a result, the machine learning approach is being used to discover gene coding areas in a genome. Such machine learning-based gene prediction techniques would be more sensitive than traditional homology-based sequence analyses.

Structure Prediction

PPI was mentioned before in the context of proteomics. However, the application of ML in structure prediction has increased accuracy from 70% to more than 80%. The application of ML in text mining is extremely promising, with training sets used to find new or unique pharmacological targets from many journal articles and secondary databases searched.

Neural Networks

Deep learning is an extension of neural networks and is a relatively new topic in ML. The term “deep” in deep learning represents the number of layers through which data is changed. As a result, deep learning is analogous to a multi-layer neural structure. These multi-layer nodes attempt to simulate how the human brain works in order to solve issues. ML already uses neural networks. To undertake analysis, neural network-based ML algorithms require refined or meaningful data from raw data sets. However, the rising amount of data generated by genome sequencing makes it harder to analyse significant information. Multiple layers of a neural network filter information and interact with each other, allowing the output to be refined.

Mental Illness

Anxiety, stress, substance use disorder, eating disorder, and other symptoms of mental disease are examples. The bad news is that most people go undiagnosed since they are not sure if they have a problem. That is a stunning but harsh reality. Until today, doctors and scientists have not been as effective in predicting mental diseases. Yes, technology innovation has enabled healthcare professionals to create smart solutions that not only detect mental diseases but also recommend the appropriate diagnostic and treatment techniques.

AI in Healthcare

Machine learning and artificial intelligence (AI) are widely employed by hospitals and healthcare providers to increase patient happiness, administer individualised treatments, make accurate forecasts, and improve quality of life. It is also being utilised to improve the efficiency of clinical trials and to accelerate the process of medication development and distribution.

Final Thoughts

The development of digitisation has rendered the twenty-first-century data-centric, affecting every business and sector. The healthcare, biology, and biotech industries are not immune to the effects. Enterprises are seeking to locate a solution that can combine their operations with a powerful resolution and give the capacity to record, exchange, and transmit data in a systematic, quicker, and smoother manner. Bioinformatics, biomedicine, network biology, and other biological subfields have long struggled with biological data processing challenges.

Are you interested in the Life Science Industry, or are you currently struggling to find an opportunity within a Biotechnology organisation? Luckily, our experts are specialised in finding candidates a fitting job within their field. Discover how they can help you here!


Also published on analyticsinsight.net


Want to stay informed about current Life Science and recruitment news on a regular base? Then register here for free.

 

Sign up

    Fill in your contact details to sign up for our newsletter.